MATH152 CALCULUS Il TUTORIAL —1|

(13.03.2015)

Question 1 : (Geometric Series) Question 4: ('th term test)

Determine the convergence or divergence of the series. Verify that the infinite series diverges.
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?. Geomelric series with r = 7 ! #0

1. Diverges by Theorem 9.9
3. Converges by Theorem 9.6

Question 5: (n'th term test)
Question 2: (Geometric Series)

Determine the convergence or divergence of the series.
Find the sum of the convergent series.
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. Question : 6 (p-test)
Question 3: (Geometric Series)

. Determine the convergence or divergence of the series.
Determine the convergence or divergence of the series

using any appropriate test from this chapter. Identify the i 1
test used, =ondin
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3 Since |r| =3 = 1, this is a divergent geometric
Series.



Question : 7 (Comparision test)

Use the Direct Comparison Test to determine the
convergence or divergence of the series.
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converges by comparison with the convergent
genmetric series
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Question 8 (Comparision test)

Use the Direct Comparison Test to determine the
convergence or divergence of the series,
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Question 9 (Ratio Test)

Use the Ratio Test to determine the convergence or
divergence of the series.
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I. Therefore, by the Ratio Test, the series diverges.

Question 10 (Ratio test)

Determine the convergence or divergence of the series
using any appropriate test from this chapter. Identify the
test used.
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I. Therefore, by the Ratio Test, the series converges.

Question 11 (Alternating series Test)

Determine the converzence or divergence of the series.
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5. Converges by Theorem 9.14

Question 12 (Alternating series Test)

Determine the convergence or divergence of the series.
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5. Converges by Theorem 9.14



Question 13 Question 15

Find the Maclaurin polynomial of degree n for Find the values of x for which the series converges.
the function. )
- s
flx)=e* n=3 = '(3)
l. x) = e /3 +l
fix) I fim [f2tl] = Hm%‘
3 f{O) =1 m—ron| B ,_.(lelj)
. fl) = —e 2 = lim g‘
= |
L) = =1
3 = Ix
5 flx)=e o 3
6. f10) =1 , . ;
I. For the series to converge: || < |
7 f"x) = = -
g fm;[o)=_| A = —3<x< i
. - . For x = 3, the series diverges.
o 0, 10) ‘ ’ 8
0. Pulx) = A0) + £ + ’f—_r + "4
! J f 21 3 7. For x = =3, the series diverges.
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5 5 Answer: —3 < x < 3
2 [}

Question 14 Question 16

Find the interval of convergence of the power series.
{Be sure to include a check for convergence at the
endpoints of the interval. )

Find the Maclaurin polynomial of degree n for
the function.
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ey =6 5. Interval convergence: 0 < x < 6
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Question 17

Approximate the function at the given value of x,
using the polynomial found in the indicated exercise

flx) = Inx, f{1.2),

Exercise 29

I, flx)=1Inx
2, == 1) — 5l — 12 + 30— 17 = 3o — 1)

5. f(1.2) = 0.1823

Question 18

Find the values of x for which the series converges.
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4. The series converges only at v = (.

Question 19

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the
endpoints of the interval.y
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4. which implies that the series converges only at the
center x = 2.

Question 20

Find the interval of convergence of the power series.
{Be sure to include a check for convergence at the
endpoints of the interval.)
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Since the series converges when x = | and when x = 3,

. the interval of convergence is | = x = 3.



