

MATH152 CALCULUS II TUTORIAL – I

(13.03.2015)

Question 1: (Geometric Series)

Determine the convergence or divergence of the series.

$$\sum_{n=0}^{\infty} \frac{4}{2^n}$$

1. $\sum_{n=0}^{\infty} \frac{4}{2^n} = 4 \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$

2. Geometric series with $r = \frac{1}{2}$

3. Converges by Theorem 9.6

Question 4: (n'th term test)

Verify that the infinite series diverges.

$$\sum_{n=1}^{\infty} \frac{n^2}{n^2 + 1}$$

1. $\lim_{n \rightarrow \infty} \frac{n^2}{n^2 + 1} = 1$

2. $\neq 0$

3. Diverges by Theorem 9.9

Question 2: (Geometric Series)

Find the sum of the convergent series.

$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n}\right)$$

1. $\sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n}\right) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n - \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n$

2. $= \frac{1}{1 - (1/2)} - \frac{1}{1 - (1/3)}$

3. $= 2 - \frac{3}{2}$

4. $= \frac{1}{2}$

Question 5: (n'th term test)

Determine the convergence or divergence of the series.

$$\sum_{n=1}^{\infty} \frac{3n - 1}{2n + 1}$$

1. $\lim_{n \rightarrow \infty} \frac{3n - 1}{2n + 1} = \frac{3}{2}$

2. $\neq 0$

3. Diverges by Theorem 9.9

Question 3: (Geometric Series)

Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used.

$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n-2}}{2^n}$$

1. $\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n-2}}{2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n 3^n 3^{-2}}{2^n}$

2. $= \sum_{n=1}^{\infty} \frac{1}{9} \left(-\frac{3}{2}\right)^n$

3. Since $|r| = \frac{3}{2} > 1$, this is a divergent geometric series.

Question 6: (p-test)

Determine the convergence or divergence of the series.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt[4]{n}}}$$

1. $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt[4]{n}}} = \sum_{n=1}^{\infty} \frac{1}{n^{5/4}}$

2. $p\text{-series with } p = \frac{5}{4}$

3. Converges by Theorem 9.11

Question : 7 (Comparision test)

Use the Direct Comparison Test to determine the convergence or divergence of the series.

$$\sum_{n=0}^{\infty} \frac{1}{3^n + 1}$$

1. $0 < \frac{1}{3^n + 1} < \frac{1}{3^n}$

2. Therefore,

$$\sum_{n=0}^{\infty} \frac{1}{3^n + 1}$$

converges by comparison with the convergent geometric series

$$\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n.$$

Question 10 (Ratio test)

Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used.

$$\sum_{n=1}^{\infty} \frac{n7^n}{n!}$$

1. $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{(n+1)7^{n+1}}{(n+1)!} \cdot \frac{n!}{n7^n} \right|$

2. $= \lim_{n \rightarrow \infty} \frac{7}{n}$

3. $= 0$

4. Therefore, by the Ratio Test, the series converges.

Question 8 (Comparision test)

Use the Direct Comparison Test to determine the convergence or divergence of the series.

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

1. For $n > 3$,

2. $\frac{1}{n^2} > \frac{1}{n!} > 0.$

3. Therefore,

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

converges by comparison with the convergent p -series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Question 11 (Alternating series Test)

Determine the convergence or divergence of the series.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

1. $a_{n+1} = \frac{1}{\sqrt{n+1}}$

2. $< \frac{1}{\sqrt{n}}$

3. $= a_n$

4. $\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}} = 0$

5. Converges by Theorem 9.14

Question 9 (Ratio Test)

Use the Ratio Test to determine the convergence or divergence of the series.

$$\sum_{n=0}^{\infty} \frac{n!}{3^n}$$

1. $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!} \right|$

2. $= \lim_{n \rightarrow \infty} \frac{n+1}{3}$

3. $= \infty$

4. Therefore, by the Ratio Test, the series diverges.

Question 12 (Alternating series Test)

Determine the convergence or divergence of the series.

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$

1. $a_{n+1} = \frac{1}{(n+1)!}$

2. $< \frac{1}{n!}$

3. $= a_n$

4. $\lim_{n \rightarrow \infty} \frac{1}{n!} = 0$

5. Converges by Theorem 9.14

Question 13

Find the Maclaurin polynomial of degree n for the function.

$$f(x) = e^{-x}, \quad n = 3$$

1. $f(x) = e^{-x}$
2. $f(0) = 1$
3. $f'(x) = -e^{-x}$
4. $f'(0) = -1$
5. $f''(x) = e^{-x}$
6. $f''(0) = 1$
7. $f'''(x) = -e^{-x}$
8. $f'''(0) = -1$

$$9. P_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

$$10. \quad = 1 - x + \frac{x^2}{2} - \frac{x^3}{6}$$

Question 15

Find the values of x for which the series converges.

$$\sum_{n=0}^{\infty} 2\left(\frac{x}{3}\right)^n$$

$$1. \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{2(x/3)^{n+1}}{2(x/3)^n} \right|$$

$$2. \quad = \lim_{n \rightarrow \infty} \left| \frac{x}{3} \right|$$

$$3. \quad = \left| \frac{x}{3} \right|$$

$$4. \text{ For the series to converge: } \left| \frac{x}{3} \right| < 1$$

$$5. \quad \Rightarrow -3 < x < 3.$$

6. For $x = 3$, the series diverges.

7. For $x = -3$, the series diverges.

8. Answer: $-3 < x < 3$

Question 14

Find the Maclaurin polynomial of degree n for the function.

$$f(x) = \frac{1}{x+1}, \quad n = 4$$

1. $f(x) = \frac{1}{x+1}$
2. $f(0) = 1$
3. $f'(x) = -\frac{1}{(x+1)^2}$
4. $f'(0) = -1$
5. $f''(x) = \frac{2}{(x+1)^3}$
6. $f''(0) = 2$
7. $f'''(x) = -\frac{6}{(x+1)^4}$
8. $f'''(0) = -6$
9. $f^{(4)}(x) = \frac{24}{(x+1)^5}$
10. $f^{(4)}(0) = 24$

$$11. P_4(x) = 1 - x + \frac{2}{2!}x^2 + \frac{-6}{3!}x^3 + \frac{24}{4!}x^4$$

$$12. \quad = 1 - x + x^2 - x^3 + x^4$$

Question 16

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the endpoints of the interval.)

$$\sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{3^{n-1}}$$

1. $\sum_{n=1}^{\infty} \left(\frac{x-3}{3} \right)^{n-1}$ is geometric.

2. It converges if $\left| \frac{x-3}{3} \right| < 1$

$$3. \quad \Rightarrow |x-3| < 3$$

$$4. \quad \Rightarrow 0 < x < 6.$$

5. Interval convergence: $0 < x < 6$

Question 17

Approximate the function at the given value of x , using the polynomial found in the indicated exercise

$$f(x) = \ln x, f(1.2),$$

Exercise 29

1. $f(x) = \ln x$

2. $\approx (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \frac{1}{4}(x - 1)^4$

3. $f(1.2) \approx 0.1823$

Question 18

Find the values of x for which the series converges.

$$\sum_{n=0}^{\infty} n! \left(\frac{x}{2}\right)^n$$

1. $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \rightarrow \infty} \frac{(n+1)!|x/2|^{n+1}}{n!|x/2|^n}$

2. $= \lim_{n \rightarrow \infty} (n+1) \left| \frac{x}{2} \right|$

3. $= \infty$

4. The series converges only at $x = 0$.

Question 20

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the endpoints of the interval.)

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^n}{(n+1)^2}$$

1. $\lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{(-1)^{n+1} (x-2)^{n+1}}{(n+2)^2} \cdot \frac{(n+1)^2}{(-1)^n (x-2)^n} \right|$

2. $= |x-2|$

3. $R = 1$

4. Center: 2

5. Since the series converges when $x = 1$ and when $x = 3$,

6. the interval of convergence is $1 \leq x \leq 3$.

Question 19

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the endpoints of the interval.)

$$\sum_{n=0}^{\infty} n! (x-2)^n$$

1. $\lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{(n+1)! (x-2)^{n+1}}{n! (x-2)^n} \right|$

2. $= \infty$

3. which implies that the series converges only at the center $x = 2$.