
Objectives
To understand basic techniques for analyzing the efficiency of algorithms
To know what searching is and understand the algorithms for linear and bi-
nary search.
To understand the basic principles of recursive definition and functions and
be able to write simple recursive functions
To understand sorting in depth and know the algorithms for selection sort
and merge sort
To appreciate how the analysis of algorithm can demonstrate that some prob-
lem are intractable and others are unsolvable.

1 Mathematical Preliminaries

When analyzing an algorithm, the amount of resources required is usually
expressed as a function of the input size. A nontrivial algorithm typically
consists of repeating a set of instructions either iteratively, e.g. by executing
a for or while loop, or recursively by invoking the same algorithm again
and again, each time reducing the input size until it becomes small enough,
in which case the algorithm solves the input instance using a straightforward
method. This implies that the amount of resources used by an algorithm can
be expressed in the form of summation or recursive formula. This mandates
the need for the basic mathematical tools that are necessary to deal with these
summations and recursive formulas in the process of analyzing an algorithm.
In this section we review some of the mathematical preliminaries and discuss
briefly some of these mathematical tools that are frequently employed in the
analysis of algorithms.

1.1 Logarithms

Let b be a positive real number greater than 1, x a real number, and suppose
that for some positive real number a we have a = bx. Then, x is called the
logarithm of a to the base b, and we write this as

x = logb a

Here b is referred to as the base of the logarithm. For any real numbers x
and y greater than 0, we have

logb xy = logb x + logb y

1

The log of a product equals the sum of the logs. similarly

logb x/y = logb x− logb y

The log of a quotient equals the difference of the logs and

logb(x
n) = n logb x,

if x > 0.
When b = 2, we will write log x instead of log2 x. To convert from one base
to another, we use the chain rule.

loga x = logb x loga b

or

logb x =
loga x

loga b

Unless otherwise stated, all logarithms in this manuscript are to the base 2.
The natural logarithm of x will be denoted by lnx.

1.2 Floor and Ceiling Functions

Let x be a real number. The floor of x, denoted by bxc, is defined as the
greatest integer less than or equal to x.
More formally, the floor function F is defined by the rule
For each real number x,

F (x) = bxc = the unique integer n such that n ≤ x < n + 1

. The ceiling of x, denoted by dxe, is defined as the least integer greater than
or equal to x.
For example,

b
√

2c = 1

d
√

2e = 2

b−2.5c = −3

d−2.5e = −2.

2

1.3 Counting and Probability

Definition 1. A sample space is the set of all possible outcomes of a random
process or experiment. An event is a subset of a sample space

In case an experiment has finitely many outcomes and all outcomes are
equally likely to occur, the probability of an event (set of outcomes) is just
the ratio of the number of outcomes in the event to the total number of
outcomes.
Equally Likely Probability Formula
If S is a finite sample space in which all outcomes are equally likely and E
is an event in S, then the probability of E, denoted P (E), is

P (E) =
the number of outcomes inE

the total number of outcomes in S
.

. Notation
For any finite set A, N(A) denotes the number of elements in A. With this
notation, the equally likely probability formula becomes

P (E) =
N(E

N(S)
.

Summation
Let S = a1, a2, . . . an be any finite sequence of numbers. The sum a1 + a2 +
. . . + an can be expressed compactly using the notation

n∑
j=1

aj

Counting the Elements of a List

Theorem 1. The Number of Elements in a List If m and n are integers and
m ≤ n, then there are n−m + 1 integers from m to n inclusive.

Counting Elements of a One-Dimensional Array Analysis of many
computer algorithms requires skill at counting the elements of a one-dimensional
array.
Let A[1],] . . . , n] be a one-dimensional array, where n is a positive integer.
The array has the same number of elements as the list of integers from 1
through n. So by Theorem 1 it has n, or n− 1 + 1, elements.

3

Theorem 2. Sum of the First n Integers
For all integers n ≥ 1,

1 + 2 + 3 + . . . + n =
n(n + 1)

2

Writing

1 + 2 + 3 + . . . + n =
n(n + 1)

2

expresses the sum 1 + 2 + 3 + . . . + n in closed form.
For each positive integer n, the quantity factorial denoted n!, is defined to
be the product of all the integers from 1 to n.

n! = n(n1) . . . 321.

Zero factorial, denoted 0!, is defined to be 1 :

0! = 1

.

2 About Basic Algorithm Analysis

This course provides an introduction to mathematical modeling of computa-
tional problems. It covers the common algorithms, algorithmic paradigms,
and data structures used to solve these problems. The course emphasizes
the relationship between algorithms and programming, and introduces basic
performance measures and analysis techniques for these problems.
We are going to cover the difference between the Big-Oh, the Omega notation
and the Theta notation. We are also going to look as some simple looping
algorithms to help us determine what the Big-Oh notation is of them. So
let’s start.

2.1 Algorithm Analysis

Why do we want to analyse an algorithm?
Let’s say you have task of being in a city A, and you want to go to a another
city B. Obviously, there are a lot of transportation options available to you:
walk, bike, take a car, a train a city bus or even fly. some of the make sense

4

over the others. so for example, if you just need to cross the street to go city
B, you can just walk over. That makes a lot more sense than flying over.
But if city B was across the country, it probably make more sense to buy a
flight ticket and flying over instead of riding your bike.
In computing, algorithms are the same thing. So let’s take sorting for exam-
ple. If you want to sort a number of elements from small to the largest, you
have a lot of optional tools available to you such as Insertion sort, Selection
sort, Quick sort, Bubble sort, buttom-up sort etc...
Our ultimate gaol in algorithm design is to complete the task we want to
solve efficiently. By efficiently, we mean that it should be quick in terms of
time and less space requirement because memory is limited in computer sys-
tems. We can have the space filled up quickly. Hence, efficiency is measured
in terms of time and space.
By analyzing them, we can compare algorithms, and depend on the task we
can pick the best one.
So what is running time analysis?
Well we want to determine how the running time increases related to the size
of the input. So as the input gets bigger, we want to see exactly what that
does to the running time.
Input is usually n values. So we can make up assumptions regarding n! In
fact we can’t assume that n is going to be small! It is probably the best
when we always assume that n is going to be adequately large.
Running Time Analysis: without making assumptions for n make for a time-
less concept that translate from old computing system for modern machines.
So let’s look at some definitions.

Definition 2 (Rate of Growth). The rate at which the graph of a running
time increases as a function of the input size

Definition 3 (Lower Order Terms). When given an approximate rate of
growth of a function, we tend to drop the lower order terms as they are less
significant to the higher order terms. For example, if given the following
function

f(n) = n3 + n,

the lower order term is n.
Here, we observe that the larger the value of n the lesser the significance of
the contribution of the lower order terms n.

5

Figure 1: Growth of some typical functions that represent running times

Definition 4 (Asymptotic Notation). Once we dispose of lower order
term(s) and preceding constants from a function that represents the running
time of an algorithm, we say that we are evaluating the asymptotic running
time or using the more technical term “time complexity”of an algorithm.
Let’s take a look at the given example:

f(n) = n3 + n

n3 is the higher order term and n is lower order term. When doing the
asymptotic notation (e. g. using the big oh!) for simplicity sake we drop the
lower order term n. Therefore, the function has O(n3) for example.

6

Figure 1(a) on page 6 shows some functions that are widely used to express
the running time of algorithms. They are called, respectively, logarithmic,
linear, quadratic and cubic. Higher order, exponential and hyper-exponential
functions are not shown in the figure. They are functions that can grow faster
than the ones shown in the figure, even for a small size of n.

Definition 5 (elementary operations). We denote by an ”elementary
operation” any computational step whose cost is always upperbounded by a
constant amount of time regardless of the input data or the algorithm used.

Let us take, for instance, the operation of adding two integers. For the
running time of this operation to be constant, we stipulate that the size of
its operands be fixed no matter what algorithm is used. Furthermore, as we
are now dealing with the asymptotic running time, we can freely choose any
positive integer k to be the ”word length” of our ”model of computation”.
Incidentally, this is but one instance in which the beauty of asymptotic no-
tation shows off; the word length can be any fixed positive integer. If we
want to add arbitrarily large numbers, an algorithm whose running time is
proportional to its input size can easily be written in terms of the elementary
operation of addition. Likewise, we can choose from a large pool of operations
and apply the fixed-size condition to obtain as many number of elementary
operations as we wish. The following operations on fixed-size operands are
examples of elementary operation.

• Arithmetic operations: addition, subtraction, multiplication and divi-
sion.

• Comparisons and logical operations.

• Assignments, including assignments of pointers when, say, traversing a
list or a tree.

2.2 O−, Ω-, and Θ-Notations

In the followings, we present special mathematical notations widely used to
formalise the notions of the order of growth and asymptotic running time of
algorithms. These notations provide approximations that make it convenient
to evaluate the large-scale differences in algorithm efficiency, while ignoring

7

differences of a constant factor and differences that occur only for small sets
of input data.
The idea of the notations, O−notation (read “big-Oh notation”), Ω−notation
(read “big-Omega notation”) and Θ−notation (read “big-Theta notation”)
is this. Suppose f and g are real-valued functions of real variables n.

1. If, for sufficiently large values of n, the values of |f | are less than those
of a multiple of |g|, then f is of order at most g, or f(n) is O(g(n)).

2. If, for sufficiently large values of n, the values of |f | are greater than
those of a multiple of |g|, then f is of order at least g, or f(n) is Ω(g(n)).

3. If, for sufficiently large values of n, the values of |f | are bounded both
above and below by those of multiples of |g|, then f is of order g, or
f(n) is Θ(g(n)).

Definition 6 (Big Oh! notation). Let f(n) and g(n) be two functions from
the set of natural numbers to a set of nonnegative real numbers. f(n) is said
to be O(g(n)) if there exists a natural number n0 and a constant c > 0 such
that c|g(n)| ≥ |f(n)| for all real numbers n ≥ n0.

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
6=∞ implies f(n) = O(g(n)).

Informally, this definition says that f(n) grows no faster than the product
of some constant times g(n).
The O-notation is sometimes used in equations as a simplification tool. For
example, instead of writing

f(n) = 10n3 + 14n2 − 4n + 26,

we may write
f(n) = 10n3 +O(n2).

This is helpful if we are not interested in the details of the lower order terms
of the equation.

Definition 7 (Big Omega notation). Let f(n) and g(n) be two functions
from the set of natural numbers to a set of nonnegative real numbers. f(n)

8

is said to be Ω(g(n)) if there exists a natural number n0 and a constant c > 0
such that c|g(n)| ≤ |f(n)| for all real numbers n ≥ n0.

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
6= 0 implies f(n) = Ω(g(n)).

Informally, this definition says that f grows at least as fast as the product
of some constant and g. It is obvious from the definition that

f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

Definition 8 (Big Theta notation). Let f(n) and g(n) be two functions
from the set of natural numbers to a set of nonnegative real numbers. f(n)
is said to be Θ(g(n)) if there exist two positive constants c1 and c2 and a
natural number n0 such that c1|g(n)| ≤ |f(n)| ≤ c1|g(n)| for all real numbers
n ≥ n0.
Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
= c implies f(n) = Θ(g(n)),

where c is a constant strictly greater than 0.

An important result of the above definition is that

f(n) = Θ(g(n)) if and only if f(n) = Ω(g(n)) and f(n) = O(g(n)).

Unlike the previous two notations, the f(n) = Θ(g(n))-notation gives an
exact picture of the rate of growth of the running time of an algorithm.
It may be helpful to think of O as similar to ≤, Ω as similar to ≥ and Θ as
similar to =.

Type of Analysis

We can analyse or evaluate an algorithm in one of the three ways:

9

Table 1: Type of Analysis

WORST CASE BEST CASE AVERAGE CASE
Longest Time Least Time Average time
Big-Oh Omega Theta
O(n) Ω(n) Θ(n)

Most of the time we do use the Big-Oh notation because it is most practically
used for one of the three. Best Case we can’t always rely on because it is not
always the best case, and Average Case is less useful than the worst case. So
what we will always think about is the Worst Case about is to plan for the
worst case scenario.

2.3 Determining the Big-Oh

The Big-Oh notation hope for the best, plan for the worst.
Let’s look at a given function here:

f(n) = n4 + 2n2 + 100n + 500

Let’s determine what the Big-Oh notation.
Let’s define the highest order term as g(n).
So what is g(n) in the above equation?

g(n) = n4

So the function
f(n) = O(g(n))

is
f(n) = O(n4)

Is it the best to always use Big-Oh notation? Most of the time, Yes!
However, if f(n) = O(n) and f(n) = Ω(n)) then we tend to use Θ(n). Is
just a formality and widely accepted practice...

So let us look at some examples of algorithms and look at what their
Big-Oh notation is.

10

Example 1
A simple loop with a constant time operation m = m + 2 inside it.
1. for i = 0 to n
2. m = m + 2
3. end for

If you look at the simple for Loop above, inside it is a constant time
operation of simple addition we denote it by C. On the outside, the loop
happens n times. So the function is a constant times n which is the amount
of time that ever happens. Given as:

f(n) = C × n

The leading constant is typically ignored! So our function has Big-Oh of n.
Which is written as follows:

f(n) = O(n)

Let us look at another slightly different example.
Example 2
A simple loop with a constant time operation m = m + 2 inside it.
1.for i = 0 to n/2
2. m = m + 2
3.end for.

We observed that the constant operation is also the same. However, the
loop happens n/2 times. Therefore

f(n) = C × 1/2× n

C × 1/2 are constants and n is the loop. Remember! the leading constants
are usually ignored! Thus, our function running time is Big-Oh of n, denoted
as

f(n) = O(n)

.
Even though the loop only iterates half as much as the last example, they

11

are BOTH O(n)!

Example 3 Nested loops
1. for i = 1 to n
2. for j = 1 to n
3. k = k + 1
4. end for
5. end for
In the Listing above, we have constant operation inside the inner loop on
line 3 that happens n times because the inner loop goes to n. That whole
package inside the outer loop has inside loop that happens n times as well.
So our function is:

f(n) = C × n× n

We can simplify this to have

f(n) = C × n2

so
f(n) = n2

Example 4 (Consecutive Statement)
// consecutive statements (1)and (2) with a constant time operations
1. for j = 1 to n; j++)
2. m = m + 1:
3. end for
4 for i = 1 to n
5 for j = 1 to n
6. k = k + 1
7. end for
8. end for
Let’ label the top (lines 1 - 3) as part (1) and the lower part lines 5 - 9 as
(2). We see that the top one is a single loop operation and the bottom one
is a nested loops. So writing our function we have

f(n) = C × n + C × n× n

The C×n is the number (1) and the C×n×n is the number (2). Therefore

f(n) = C × n + C × n2

12

We know that the C × n2 is the highest order in this case, and that will
take precedence. Thus,

f(n) = O(n2)

Furthermore, let’s look at another example dealing with the if-then-else
statement.
Example 5- if-then-else Statement]
// if-then-else statement
1. if(x+1¡5)
2. return -1
3 else
4. for i = 1 to n
5. for j = 1 to n
6. k = k + 1
7. end for
8. end for
9. return k
Let’s build our function as we go through. So looking at the if statement,
we have a constant operation (x + 1 < 5). We denote that as C0. If this
condition is met, then we have another constant operation (return -1. we
denote it by C1. So at this point

f(n) = C0 + C1

However with the else statement outer loop, the loops goes up to n and the
inner loop goes to n also with a constant operation we denote that by C2.
Thus,

f(n) = C0 + C1 + n× n× C2

. But when we group it

f(n) = C0 + C1 + C2 × n2

n2is the highest order here. Therefore

f(n) = O(n2)

Example 6

13

Consider Algorithm count, which consists of two nested loops and a variable
count which counts the number of iterations performed by the algorithm on
input n, which is a positive integer.
Algorithm count
Input: A positive integer n.
Output: count = number of times Step 5 is executed.
1. count← 0
2. for i = 1 to n
3. m← bn/ic
4. for j ← 1 to m
5. count← count + 1
6. end for
7. end for
8. return count
The inner for loop is executed repeatedly for the following values of n:

n, bn/2c, bn/3c, . . . , bn/nc

. Thus, the total number of times Step 5 is executed is

n∑
i=1

bn
i
c.

Since
n∑

i=1

(
n

i
− 1) ≤

n∑
i=1

bn
i
c ≤

n∑
i=1

n

i
,

we conclude that Step 5 is executed Θ(n log n) times. (See Example 11).
As the running time is proportional to count, we conclude that it is Θ(n log n).

In general, let f(n) = akn
k+ak−1n

k−1+. . .+a1n+a0. Then, f(n) = Θ(nk).
Recall that this implies that f(n) = O(nk) and f(n) = Ω(nk).
Example 7 Since

lim
n→∞

log n2

n
= lim

n→∞

2 log n

nln2
=

2

ln2
lim
n→∞

1

n
= 0

(differentiate both numerator and denominator), we see that f(n) is O(n),
but not Ω(n). It follows that f(n) is not Θ(n).

14

Example 8 Since
log n2 = 2 log n, we immediately see that logn2 = Theta(log n). In general,
for any fixed constant k, log nk = Θ(logn).
Example 9
Any constant function is O(1), Ω(1) and Θ(1).
Example 10
Consider the series

∑n
j=1 log j. Clearly

n∑
j=1

log l ≤
n∑

j=1

log n

That is
n∑

j=1

log j = O(n log n).

Also

n∑
j=1

log j ≥
bn/2c∑
j=1

log(
n

2
) = bn/2c log(

n

2
) = bn/2c log n− bn/2c

Thus,
n∑

j=1

log j = Ω(n log n)

It follows that

n∑
j=1

log j = Θ(n log n)

Example 11
We want to find an exact bound for the function f(n) = log n!. First, note
that log n! =

∑n
j=1 log j. We have shown in Example 10 that

∑n
j=1 log j =

Θ(n log n). It follows that log n! = Θ(n log n).
Example 12
It is easy to see that

n∑
j=1

n

j
=

n∑
j=1

n

1
= O(n2).

In what follows, we list closed form formulas for some of the summations that
occur quite often when analyzing algorithms. The proofs of these formulas

15

are left for the student as exercises.
The arithmetic series:

n∑
j=1

j =
n(n + 1)

2
= Θ(n2) (1)

The sum of squares:

n∑
j=1

j2 =
n(n + 1)(2n + 1)

6
= Θ(n3) (2)

The geometric series

n∑
j=1

cj =
cn+1 − 1

c− 1
= Θ(cn), c 6= 1 (3)

If c = 2, we have
n∑

j=1

2j = 2n+1 − 1 = Θ(2n) (4)

If c = 1/2, we have
n∑

j=1

1

2j
= 2− 1

2n
< 2 = Θ(1) (5)

2.3.1 Complexity Classes and the o-notation pronounced as ”little
oh!

Let R be the relation on the set of complexity functions defined by fRg if
and only if f(n) = (g(n)). It is easy to see that R is reflexive, symmetric and
transitive, i.e., an equivalence relation The equivalence classes induced by
this relation are called complexity classes. The complexity class to which a
complexity function g(n) belongs includes all functions f(n) of order Θ(g(n)).
For example, all polynomials of degree 2 belong to the same complexity class
n2. To show that two functions belong to different classes, it is useful to use
the o-notation(read ”little oh”) defined as follows.

Definition 9 (little oh). Let f(n) and g(n) be two functions from the set
of natural numbers to the set of nonnegative real numbers. f(n) is said to be
o(g(n)) if for every constant c > 0 there exists a positive integer n0 such that

16

f(n) < cg(n) for all n ≥ n0.
Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
= 0 implies f(n) = o(g(n)),

Informally, this definition says that f(n) becomes insignificant relative to
g(n) as n approaches infinity. It follows from the definition that

f(n) = o(g(n))⇔ f(n) = O(g(n)), but g(n) 6= O(f(n)).

For example, n log n is o(n2) is equivalent to saying that n log n is O(n2) but
n2 is not O(n log n).

3 Determining the Best, Worst and Average

Cases for Algorithm Linear Search

Let A[1...n] be a sequence of n elements. Consider the problem of determining
whether a given element x is in A. This problem can be rephrased as follows.
Find an index j, 1 ≤ j ≤ n, such that x = A[j] if x is in A, and j =
0 otherwise. A straightforward approach is to scan the entries in A and
compare each entry with x. If after j comparisons,1 ≤ j ≤ n, the search
is successful, i.e., x = A[j], j is returned; otherwise a value of 0 is returned
indicating an unsuccessful search. This method is referred to as sequential
search. It is also called linear search, as the maximum number of element
comparisons grows linearly with the size of the sequence. The algorithm is
shown as Algorithm LINEARSEARRCH.

Algorithm LINEARSEARRCH
Input: An array A[1..n] of n elements and an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. j ←− 1
2. while (j < n) and (x 6= A[j])
3. j ←− j + 1
4. end while
5. if x = A[j] then return j else return 0

Obviously, the minimum number of comparisons is 1, and it is achievable
when the element being searched for, x, is in the first position of the array,

17

and that gives us the least running time (Best case). Therefore

CBest(n) = Ω(n) = Ω(1)

To find the maximum number of comparisons, let us first consider applying
the linear search on the array

A = [1, 4, 33, 7, 8, 17, 9, 10, 20, 12, 15, 22, 23, 27, 32, 18, 35].

If we search for 4, we need two comparisons,whereas searching for 8 costs
five comparisons. Now, in the case of unsuccessful search, it is easy to see
that searching for elements not in the array takes n comparisons because
we need to search through all the element in the array. It is not difficult to
see that, in general, the algorithm always performs the maximum number of
comparisons whenever x = A[n] or when x does not appear in the array at
all. Thus in the worst case, the linear search algorithm is O(n). Hence,

CWorst(n) = O(n)

To find the average number of comparisons we consider a situation where
the element x to searched exist in the array and that it is equally likely to
occur in any position in the array. Accordingly, the number of comparison
can be any of the numbers 1, 2, 3, ..., n, and each occur with the probability
P [E] = 1/n. Then

CAvg(n) = [1× 1

n
+ 2× 1

n
+ ... + n× 1

n
].

CAvg(n) =
1

n
[1 + 2 + 3 + ... + n]

=
1

n
[
n(n + 1)

2
]

= [
(n + 1)

2
]

This agrees with our intuitive feeling that the average number of compar-
isons required to find an item is approximately equal to half the number of
elements in the array.
Asymptotically, therefore

CAvg(n) = Θ(n)

18

4 Binary Search

Using the linear search approach for searching problem we see that intuitively,
scanning all entries of A[1 . . . n] is inevitable if no more information about the
ordering of the elements in A is given. If we are also given that the elements in
A are sorted, say in nondecreasing order, then there is a much more efficient
algorithm. The following example illustrates this efficient search method.

Consider searching the array

A[1 . . . 14] = [1, 4, 5, 7, 8, 9, 10, 12, 15, 22, 23, 27, 32, 35].

In this instance, we want to search for element x = 22. First, we compare x
with the middle element A[b(1 + 14)/2c] = A[7] = 10. Since 22 > A[7], and
since it is known that A[i] ≤ A[i + 1], 1 ≤ i < 14, x cannot be in A[1 . . . 7],
and therefore this portion of the array can be discarded. So, we are left with
the sub-array

A[8 . . . 14] = [12, 15, 22, 23, 27, 32, 35].

Next, we compare x with the middle of the remaining elements A[b(8 +
14)/2c] = A[11] = 23. Since 22 < A[11], and since A[i] ≤ A[i + 1], 11 ≤ i <
14, x cannot be in A[11 . . . 14], and therefore this portion of the array can
also be discarded. Thus, the remaining portion of the array to be searched
is now reduced to

A[8 . . . 10] = [12, 15, 22].

Repeating this procedure, we discard A[8 . . . 9], which leaves only one entry in
the array to be searched, that is A[10] = 22. Finally, we find that x = A[10],
and the search is successfully completed.

In general, let A[low . . . high] be a nonempty array of elements sorted in
nondecreasing order. Let A[mid] be the middle element, and suppose that
x > A[mid]. We observe that if x is in A, then it must be one of the elements
A[mid + 1], A[mid + 2], . . . , A[high]. It follows that we only need to search
for x in A[mid + 1 . . . high]. In other words, the entries in A[low . . .mid]
are discarded in subsequent comparisons since, by assumption, A is sorted in
nondecreasing order, which implies that x cannot be in this half of the array.
Similarly, if x < A[mid], then we only need to search for x in A[low . . .mid−
1]. This results in an efficient strategy which, because of its repetitive halving,
is referred to as binary search. Algorithm BINARYSEARCH gives a more
formal description of this method.

19

Algorithm BINARYSEARCH
Input: An array A[1 . . . n] of n elements sorted in nondecreasing order and
an element x.
Output: j if x = A[j]; 1 ≤ j ≤ n ; and 0 otherwise.
1. low ← 1; high← n; j ← 0
2. while (low ≤ high) and (j = 0)
3. mid = b(low + high)/2c
4. if x = A[mid] then j ← mid
5. else if x < A[mid] then high← mid− 1
6. else low ← mid + 1
7. end while
8. return j

4.1 Analysis of the binary search algorithm

Henceforth, we will assume that each three-way comparison (if-then-else)
counts as one comparison. Obviously, the minimum number of comparisons
is 1, and it is achievable when the element being searched for, x, is in the
middle position of the array.To find the maximum number of comparisons, let
us First consider applying binary search on the array [2, 3, 5, 8]. If we search
for 2 or 5, we need two comparisons, whereas searching for 8 costs three
comparisons. Now, in the case of unsuccessful search, it is easy to see that
searching for elements such as 1, 4, 7 or 9 takes 2, 2, 3 and 3 comparisons,
respectively. It is not hard to see that, in general, the algorithm always
performs the maximum number of comparisons whenever x is greater than
or equal to the maximum element in the array. In this example, searching
for any element greater than or equal to 8 costs three comparisons. Thus, to
find the maximum number of comparisons, we may assume without loss of
generality that x is greater than or equal to A[n].
Example 13
Suppose that we want to search for x = 35 or x = 100 in

A[1 . . . 14] = [1, 4, 5, 7, 8, 9, 10, 12, 15, 22, 23, 27, 32, 35].

In each iteration of the algorithm, the bottom half of the array is discarded
until there is only one element:

[12, 15, 22, 23, 27, 32, 35,] −→ [27, 32, 35,] −→ [35].

20

Therefore, to compute the maximum number of element comparisons per-
formed by Algorithm BINARYSEARCH, we may assume that x is greater
than or equal to all elements in the array to be searched. To compute the
number of remaining elements in A[1 . . . n] in the second iteration, there are
two cases to consider according to whether n is even or odd. If n is even,
then the number of entries in A[mid+1 . . . n] is n/2; otherwise it is (n−1)/2.
Thus, in both cases, the number of elements in A[mid + 1 . . . n] is exactly
bn/2c.
Similarly, the number of remaining elements to be searched in the third it-
eration is bbn/2c/2c = bn/4c.
In general, in the jth pass through the while loop, the number of remaining
elements is bn/2j−1c. The iteration is continued until either x is found or the
size of the subsequence being searched reaches 1, whichever occurs first. As
a result, the maximum number of iterations needed to search for x is that
value of j satisfying the condition

bn/2j−1c = 1

. By the definition of the floor function, this happens exactly when

1 ≤ n/2j−1 < 2.

or
2j−1 ≤ n < 2j,

or
j − 1 ≤ log n < j

. Since j is integer, we conclude that

j = blog nc+ 1.

Example 14
Suppose an array contains 1000000 elements.
Accordingly, using the binary search algorithm,on requires only about 20
comparisons to find the position of an item in the array.

4.1.1 Limitations of the Binary Search Algorithm

Since the binary search algorithm is very efficient (e.g. it requires only about
20 comparisons with an array of 1000000 elements) why would one want to

21

use any other search algorithm? This is because the algorithm requires two
conditions: (1) the array must be sorted and (2) one must have direct access
to the middle element in any sub-array. This means that one must essentially
use a sorted array to hold the data. But keeping data in a sorted array
is normally very expensive when there are many insertions and deletions.
Accordingly, in such situation, one may use a different data structure, such
as a binary search tree, to store the data.
The performance of the binary search algorithm can be described in terms
of a decision tree, which is a binary tree that exhibits the behavior of the
algorithm. Figure 2 shows the decision tree corresponding to the array given
in Examples 13. by searching for the element x = 22. The darkened nodes
are those compared against x.

Figure 2: A decision tree that shows the behavior of binary search.

Note that the decision tree is a function of the number of the elements in
the array only. Figure 3 on page 23 shows two decision trees corresponding
to two arrays of sizes 10 and 14, respectively. As implied by the two figures,
the maximum number of comparisons in both trees is 4. In general, the
maximum number of comparisons is one plus the height of the corresponding
decision tree. Since the height of such a tree is blog nc, we conclude that the
maximum number of comparisons is blog nc+ 1. We have in effect given two
proofs of the following theorem:

Theorem 3. The number of comparisons performed by Algorithm BINARY-
SEARCH on a sorted array of size n is at most blog nc+ 1.

22

Figure 3: Two decision trees corresponding to two arrays of sizes 10 and 14.

5 Using recurrence relations

In recursive algorithms, a formula bounding the running time is usually given
in the form of a recurrence relation, that is, a function whose definition
contains the function itself, e.g. T (n) = 2T (n/2)+n. Finding the solution of
a recurrence relation has been studied well to the extent that the solution of
a recurrence may be obtained mechanically (See any Discrete mathematics
book for a discussion on recurrence relations). It may be possible to derive
a recurrence that bounds the number of basic operations in a non-recursive
algorithm. For example, in Algorithm Binarysearch, if we let C(n) be the
number of comparisons performed on an instance of size n, we may express
the number of comparisons done by the algorithm using the recurrence

C(n) ≤
{

1, if n = 1
C(bn/2c) + 1, if n ≥ 2

(6)

The solution to this recurrence reduces to a summation as follows.

C(n) ≤ C(bn/2c) + 1

= C(bbn/2c/2c) + 1 + 1

= C(bn/4c) + 1 + 1

.

.

.

= blog nc+ 1,

23

That is, C(n) ≤ blog nc+1. It follows that C(n) = O(log n). Since the oper-
ation of element comparison is a basic operation in Algorithm Binarysearch,
we conclude that its time complexity is O(log n).

6 Divide and conquer: Merging two Sorted

Lists

Suppose we have an array A[1..m] and three indices p, q and r, with 1 ≤
p ≤ q < r ≤ m, such that both the sub-arrays A[p..q] and A[q + 1..r]
are individually sorted in nondecreasing order. We want to rearrange the
elements in A so that the elements in the subarray A[p..r] are sorted in
nondecreasing order. This process is referred to as merging A[p..q] with
A[q + 1..r]. An algorithm to merge these two sub-arrays works as follows.
We maintain two pointers s and t that initially point to A[p] and A[q + 1],
respectively. We prepare an empty array B[p..r] which will be used as a
temporary storage. Each time, we compare the elements A[s] and A[t] and
append the smaller of the two to the auxiliary array B,if they are equal we
will choose to append A[s]. Next, we update the pointers: If A[s] ≤ A[t],
then we increment s, otherwise we increment t. This process ends when
s = q + 1 or t = r + 1. In the First case, we append the remaining elements
A[t..r] to B, and in the second case, we append A[s..q] to B. Finally, the
array B[p::r] is copied back to A[p::r]. This procedure is given in Algorithm
MERGE.

Algorithm MERGE
Input: An array A[1..m] of elements and three indices p, q and r, with
1 ≤ p ≤ q < r ≤ m, such that both the subarrays A[p..q] and A[q + 1. : .r]
are sorted individually in nondecreasing order.
Output: A[p..r] contains the result of merging the two sub-arrays A[p..q]
and A[q + 1..r]
1. comment: B[p..r] is an auxiliary array.
2. s←− p; t←− q + 1; k ←− p
3. while s ≤ q and t ≤ r
4. if A[s] ≤ A[t] then
5. B[k]←− A[s]
6. s← s + 1
7. else

24

8. B[k]←− A[t]
9. t←− t + 1
10. end if
11. k ←− k + 1
12. end while
13. if s = q + 1 then B[k..r]←− A[t..r]
14. else B[k..r]←− A[s :: q]
15. end if
16. A[p..r]←− B[p..r]

Let n denote the size of the array A[p..r] in the input to Algorithm
MERGE, i.e., n = r−p+1. We want to Find the number of comparisons that
are needed to rearrange the entries of A[p..r]. It should be emphasized that
from now on when we talk about the number of comparisons performed by
an algorithm, we mean element comparisons, i.e., the comparisons involving
objects in the input data. Thus, all other comparisons, e.g. those needed for
the implementation of the while loop, will be excluded.

Let the two sub-arrays be of sizes n1 and n2, where n1 + n2 = n. The
least number of comparisons happens if each entry in the smaller sub-array
is less than all entries in the larger sub-array. For example, to merge the two
sub-arrays

[2 3 6] and [7 11 13 45 57],

the algorithm performs only three comparisons. On the other hand, the
number of comparisons may be as high as n− 1. For example, to merge the
two sub-arrays

[2 3 66] and [7 11 13 45 57],

seven comparisons are needed. It follows that the number of comparisons
done by Algorithm MERGE is at least n1 and at most n− 1.

Observation 1. The number of element comparisons performed by Algo-
rithm MERGE to merge two nonempty arrays of sizes n1 and n2, respectively,
where n1 ≤ n2, into one sorted array of size n = n1 + n2 is between n1 and
n− 1. In particular, if the two array sizes are bn/2c and dn/2e, the number
of comparisons needed is between bn/2c and n− 1.

How about the number of element assignments (again here we mean as-
signments involving input data)? At first glance, one may start by looking at

25

the while loop, the if statements, etc. in order to find out how the algorithm
works and then compute the number of element assignments.
However, it is easy to see that each entry of array B is assigned exactly once.
Similarly, each entry of array A is assigned exactly once, when copying B
back into A. As a result, we have the following observation:

Observation 2. The number of element assignments performed by Algorithm
MERGE to merge two arrays into one sorted array of size n is exactly 2n.

7 On some naive sorting: algorithms

Let A[1 . . . n] be an array of n elements. A simple and straightforward algo-
rithm to sort the entries in A works as follows. First, we find the minimum
element and store it in A[1]. Next, we find the minimum of the remaining
n − 1 elements and store it in A[2]. We continue this way until the second
largest element is stored in A[n− 1]. This method is described in Algorithm
SELECTIONSORT.

Algorithm SELECTIONSORT
Input: An array A[1 . . . n] of n elements.
Output: A[1 . . . n] sorted in nondecreasing order.
1. for i←− 1 to n− 1
2. k = i
3. for j ←− i + 1 to n {Find the ith smallest element.}
4. if A[j] < A[k] then k ←− j
5. end for
6. if k 6= i then interchange A[i] and A[k]
7. end for

It is easy to see that the number of element comparisons performed by
the algorithm is exactly

f(n) =
n−1∑
i=1

(n− i) = (n− 1) + (n− 2) + . . . + 1 =
n−1∑
i=1

i =
n(n− 1)

2

It is also easy to see that the number of element interchanges is between 0
and n − 1. Since each interchange requires three element assignments, the
number of element assignments is between 0 and 3(n− 1).

26

Observation 3. The number of element comparisons performed by Algo-
rithm SELECTIONSORT is n(n−1)/2. The number of element assignments
is between 0 and 3(n− 1).

7.1 Insertion Sort

As stated in Observation 1.1 above, the number of comparisons performed
by Algorithm SELECTIONSORT is exactly n(n−1)/2 regardless of how the
elements of the input array are ordered. Another sorting method in which
the number of comparisons depends on the order of the input elements is the
so-called ELECTIONSORT. This algorithm, which is shown below, works
as follows. We begin with the sub-array of size 1, A[1], which is already
sorted. Next, A[2] is inserted before or after A[1] depending on whether it
is smaller than A[1] or not. Continuing this way, in the ith iteration, A[i]
is inserted in its proper position in the sorted sub-array A[1 . . . i − 1]. This
is done by scanning the elements from index i − 1 down to 1, each time
comparing A[i] with the element at the current position. In each iteration
of the scan, an element is shifted one position up to a higher index. This
process of scanning, performing the comparison and shifting continues until
an element less than or equal to A[i] is found, or when all the sorted sequence
so far is exhausted. At this point, A[i] is inserted in its proper position, and
the process of inserting element A[i] place is complete. in its proper place is
complete.

Algorithm INSERTIONSORT
Input: An array A[1 . . . n] of n elements.
Output: A[1 . . . n] sorted in nondecreasing order.
1. for i← 2 to n
2. x← A[i]
3. j ← i− 1
4. while (j > 0) and (A[j] > x)
5. A[j + 1]← A[j]
6. j ← j − 1
7. end while
8. A[j + 1]← x
9. end for

Unlike Algorithm SELECTIONSORT, the number of element compar-
isons done by Algorithm INSERTIONSORT depends on the order of the
input elements.

27

It is easy to see that the number of element comparisons is minimum when
the array is already sorted in nondecreasing order. In this case, the number
of element comparisons is exactly n−1, as each element A[i], 2 � i � n, is
compared with A[i − 1] only. On the other hand, the maximum number of
element comparisons occurs if the array is already sorted in decreasing order
and all elements are distinct. In this case, the number of element comparisons
is

f(n) =
n∑

i=2

i− 1 =
n−1∑
i=1

i =
n(n− 1)

2
,

as each element A[i], 2 ≤ i ≤ n, is compared with each entry in the sub-array
A[1..i − 1]. This number coincides with that of Algorithm SELECTION-
SORT.

Observation 4. The number of element comparisons performed by Algo-
rithm INSERTIONSORT is between n − 1 and n(n − 1)/2. The number
of element assignments is equal to the number of element comparisons plus
n− 1.

Notice the correlation of element comparisons and assignment in Algo-
rithm INSERTIONSORT. This is in contrast to the independence of the
number of element comparison in Algorithm SELECTIONSORT related to
data arrangement.

8 Bottom-up Merge Sorting

The two sorting methods discussed thus far are both inefficient in the sense
that the number of operations required to sort n elements is proportional
to n2. That means that the number of comparison in these algorithms is
proportional to the square of the size of the array. If the size of the array
doubles, the number of comparison quadruples. If the size of array triples,
the numbit will take nine times as long to finish. Computer scientist call this
a quadratic on n2 algorithm.
In this section, we describe an efficient sorting algorithm that performs much
fewer element comparisons called buttom-up merge sort algorithm.
In the case of the buttom-up merge sort, we divide the array into two pieces
and sorted the individual piece before merging them together. The real work

28

is done during the merge process when the elements in the sub-array are
copied back into the original array.

Figure 4 on page 29 depicts the merging process to sort the array

A[1..8] = [3, 1, 4, 1, 5, 9, 2, 6]

.The dashed lines show the original array is continually halved until each
element is its own array with the values shown at the bottom. The single-
element array are then merged back up into the two item array to produce
the values shown in the second level. The merging process continues up the
diagram to produce the final sorted version of the array shown at the top.

Figure 4: Merges required to sort A[1..8] = [3, 1, 4, 1, 5, 9, 2, 6]

Algorithm Bottomupsort
Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.
1. t←− 1
2. while t < n
3. s←− t; t←− 2s; i←− 0
4. while i + t ≤ n
5. MERGE(A, i + 1, i + s, i + t)
6. i←− i + t
7. end while
8. if i + s < n then Merge(A, i + 1 i + s, n)
9. end while

29

The diagram makes analysis of the bottom-up merge sort easy. Starting
at the bottom level, we have to copy the n elements in the second level.
From the second to third, the n values. The only question left to is how
many levels are there? This boils down to how many times an array of size
n can be split in half. You already know from the analysis of binary search
that this just log2 n. Therefore, the total work required to sort n elements is
n log2 n. Computer scientists call this an n log n algorithm.

So which is going to be better, the n2 sorting algorithm or the n log n
bottom-up merge? If the input size is small, the selection sort might be a
little faster because the algorithm is simpler and there is less overhead. What
happens, though as n gets larger? we saw in the analysis of the binary search
that the log function grows very slowly (log2 16, 000, 000 ≈ 24) so n(log2 n)
will grow much slower than n(n). (see Figure 1 on page 6 for more illustra-
tion).

9 Further Reading

1. Introduction to Algorithms by Thomas H Corman
2. Algorithms by Robert Sedgewick & Kevin Wayne.
3. The Algorithm Design Manual by Steve S
4. Algorithm for Interviews by Admin Aziz and Amit Prakash
5. Algorithm in Nutshell.
6. Algorithm Design by Kleinberg & Tardos
7. Introduction to Algorithms: A Creative Approach by Udi mamber
8. The Design and Analysis of Algorithms
9. Data Structures and Algorithms. Aho, Ullman & Hopcroft

30

